matplotlib.axes.Axes.plot#

Axes.plot(*args, scalex=True, scaley=True, data=None, **kwargs)[source]#

Plot y versus x as lines and/or markers.

Call signatures:

plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

The coordinates of the points or line nodes are given by x, y.

The optional parameter fmt is a convenient way for defining basic formatting like color, marker and linestyle. It's a shortcut string notation described in the Notes section below.

>>> plot(x, y)        # plot x and y using default line style and color
>>> plot(x, y, 'bo')  # plot x and y using blue circle markers
>>> plot(y)           # plot y using x as index array 0..N-1
>>> plot(y, 'r+')     # ditto, but with red plusses

You can use Line2D properties as keyword arguments for more control on the appearance. Line properties and fmt can be mixed. The following two calls yield identical results:

>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
...      linewidth=2, markersize=12)

When conflicting with fmt, keyword arguments take precedence.

Plotting labelled data

There's a convenient way for plotting objects with labelled data (i.e. data that can be accessed by index obj['y']). Instead of giving the data in x and y, you can provide the object in the data parameter and just give the labels for x and y:

>>> plot('xlabel', 'ylabel', data=obj)

All indexable objects are supported. This could e.g. be a dict, a pandas.DataFrame or a structured numpy array.

Plotting multiple sets of data

There are various ways to plot multiple sets of data.

  • The most straight forward way is just to call plot multiple times. Example:

    >>> plot(x1, y1, 'bo')
    >>> plot(x2, y2, 'go')
    
  • If x and/or y are 2D arrays a separate data set will be drawn for every column. If both x and y are 2D, they must have the same shape. If only one of them is 2D with shape (N, m) the other must have length N and will be used for every data set m.

    Example:

    >>> x = [1, 2, 3]
    >>> y = np.array([[1, 2], [3, 4], [5, 6]])
    >>> plot(x, y)
    

    is equivalent to:

    >>> for col in range(y.shape[1]):
    ...     plot(x, y[:, col])
    
  • The third way is to specify multiple sets of [x], y, [fmt] groups:

    >>> plot(x1, y1, 'g^', x2, y2, 'g-')
    

    In this case, any additional keyword argument applies to all datasets. Also this syntax cannot be combined with the data parameter.

By default, each line is assigned a different style specified by a 'style cycle'. The fmt and line property parameters are only necessary if you want explicit deviations from these defaults. Alternatively, you can also change the style cycle using rcParams["axes.prop_cycle"] (default: cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'])).

Parameters:
x, yarray-like or scalar

The horizontal / vertical coordinates of the data points. x values are optional and default to range(len(y)).

Commonly, these parameters are 1D arrays.

They can also be scalars, or two-dimensional (in that case, the columns represent separate data sets).

These arguments cannot be passed as keywords.

fmtstr, optional

A format string, e.g. 'ro' for red circles. See the Notes section for a full description of the format strings.

Format strings are just an abbreviation for quickly setting basic line properties. All of these and more can also be controlled by keyword arguments.

This argument cannot be passed as keyword.

dataindexable object, optional

An object with labelled data. If given, provide the label names to plot in x and y.

Note

Technically there's a slight ambiguity in calls where the second label is a valid fmt. plot('n', 'o', data=obj) could be plt(x, y) or plt(y, fmt). In such cases, the former interpretation is chosen, but a warning is issued. You may suppress the warning by adding an empty format string plot('n', 'o', '', data=obj).

Returns:
list of Line2D

A list of lines representing the plotted data.

Other Parameters:
scalex, scaleybool, default: True

These parameters determine if the view limits are adapted to the data limits. The values are passed on to autoscale_view.

**kwargsLine2D properties, optional

kwargs are used to specify properties like a line label (for auto legends), linewidth, antialiasing, marker face color. Example:

>>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1', linewidth=2)
>>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')

If you specify multiple lines with one plot call, the kwargs apply to all those lines. In case the label object is iterable, each element is used as labels for each set of data.

Here is a list of available Line2D properties:

Property

Description

agg_filter

a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image

alpha

scalar or None

animated

bool

antialiased or aa

bool

clip_box

Bbox

clip_on

bool

clip_path

Patch or (Path, Transform) or None

color or c

color

dash_capstyle

CapStyle or {'butt', 'projecting', 'round'}

dash_joinstyle

JoinStyle or {'miter', 'round', 'bevel'}

dashes

sequence of floats (on/off ink in points) or (None, None)

data

(2, N) array or two 1D arrays

drawstyle or ds

{'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'

figure

Figure

fillstyle

{'full', 'left', 'right', 'bottom', 'top', 'none'}

gapcolor

color or None

gid

str

in_layout

bool

label

object

linestyle or ls

{'-', '--', '-.', ':', '', (offset, on-off-seq), ...}

linewidth or lw

float

marker

marker style string, Path or MarkerStyle

markeredgecolor or mec

color

markeredgewidth or mew

float

markerfacecolor or mfc

color

markerfacecoloralt or mfcalt

color

markersize or ms

float

markevery

None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]

mouseover

bool

path_effects

AbstractPathEffect

picker

float or callable[[Artist, Event], tuple[bool, dict]]

pickradius

unknown

rasterized

bool

sketch_params

(scale: float, length: float, randomness: float)

snap

bool or None

solid_capstyle

CapStyle or {'butt', 'projecting', 'round'}

solid_joinstyle

JoinStyle or {'miter', 'round', 'bevel'}

transform

unknown

url

str

visible

bool

xdata

1D array

ydata

1D array

zorder

float

See also

scatter

XY scatter plot with markers of varying size and/or color ( sometimes also called bubble chart).

Notes

Format Strings

A format string consists of a part for color, marker and line:

fmt = '[marker][line][color]'

Each of them is optional. If not provided, the value from the style cycle is used. Exception: If line is given, but no marker, the data will be a line without markers.

Other combinations such as [color][marker][line] are also supported, but note that their parsing may be ambiguous.

Markers

character

description

'.'

point marker

','

pixel marker

'o'

circle marker

'v'

triangle_down marker

'^'

triangle_up marker

'<'

triangle_left marker

'>'

triangle_right marker

'1'

tri_down marker

'2'

tri_up marker

'3'

tri_left marker

'4'

tri_right marker

'8'

octagon marker

's'

square marker

'p'

pentagon marker

'P'

plus (filled) marker

'*'

star marker

'h'

hexagon1 marker

'H'

hexagon2 marker

'+'

plus marker

'x'

x marker

'X'

x (filled) marker

'D'

diamond marker

'd'

thin_diamond marker

'|'

vline marker

'_'

hline marker

Line Styles

character

description

'-'

solid line style

'--'

dashed line style

'-.'

dash-dot line style

':'

dotted line style

Example format strings:

'b'    # blue markers with default shape
'or'   # red circles
'-g'   # green solid line
'--'   # dashed line with default color
'^k:'  # black triangle_up markers connected by a dotted line

Colors

The supported color abbreviations are the single letter codes

character

color

'b'

blue

'g'

green

'r'

red

'c'

cyan

'm'

magenta

'y'

yellow

'k'

black

'w'

white

and the 'CN' colors that index into the default property cycle.

If the color is the only part of the format string, you can additionally use any matplotlib.colors spec, e.g. full names ('green') or hex strings ('#008000').

Examples using matplotlib.axes.Axes.plot#

Plotting categorical variables

Plotting categorical variables

Plotting categorical variables
CSD Demo

CSD Demo

CSD Demo
Curve with error band

Curve with error band

Curve with error band
EventCollection Demo

EventCollection Demo

EventCollection Demo
Fill Between and Alpha

Fill Between and Alpha

Fill Between and Alpha
Filling the area between lines

Filling the area between lines

Filling the area between lines
Fill Betweenx Demo

Fill Betweenx Demo

Fill Betweenx Demo
Customizing dashed line styles

Customizing dashed line styles

Customizing dashed line styles
Lines with a ticked patheffect

Lines with a ticked patheffect

Lines with a ticked patheffect
Marker reference

Marker reference

Marker reference
Markevery Demo

Markevery Demo

Markevery Demo
Mapping marker properties to multivariate data

Mapping marker properties to multivariate data

Mapping marker properties to multivariate data
Psd Demo

Psd Demo

Psd Demo
Simple Plot

Simple Plot

Simple Plot
Using span_where

Using span_where

Using span_where
Creating a timeline with lines, dates, and text

Creating a timeline with lines, dates, and text

Creating a timeline with lines, dates, and text
hlines and vlines

hlines and vlines

hlines and vlines
Contour Corner Mask

Contour Corner Mask

Contour Corner Mask
Contour plot of irregularly spaced data

Contour plot of irregularly spaced data

Contour plot of irregularly spaced data
pcolormesh grids and shading

pcolormesh grids and shading

pcolormesh grids and shading
Spectrogram Demo

Spectrogram Demo

Spectrogram Demo
Watermark image

Watermark image

Watermark image
Aligning Labels

Aligning Labels

Aligning Labels
Axes box aspect

Axes box aspect

Axes box aspect
Axes Demo

Axes Demo

Axes Demo
Controlling view limits using margins and sticky_edges

Controlling view limits using margins and sticky_edges

Controlling view limits using margins and sticky_edges
Axes Props

Axes Props

Axes Props
axhspan Demo

axhspan Demo

axhspan Demo
Broken Axis

Broken Axis

Broken Axis
Resizing axes with constrained layout

Resizing axes with constrained layout

Resizing axes with constrained layout
Resizing axes with tight layout

Resizing axes with tight layout

Resizing axes with tight layout
Figure labels: suptitle, supxlabel, supylabel

Figure labels: suptitle, supxlabel, supylabel

Figure labels: suptitle, supxlabel, supylabel
Invert Axes

Invert Axes

Invert Axes
Secondary Axis

Secondary Axis

Secondary Axis
Sharing axis limits and views

Sharing axis limits and views

Sharing axis limits and views
Figure subfigures

Figure subfigures

Figure subfigures
Multiple subplots

Multiple subplots

Multiple subplots
Creating multiple subplots using ``plt.subplots``

Creating multiple subplots using plt.subplots

Creating multiple subplots using ``plt.subplots``
Plots with different scales

Plots with different scales

Plots with different scales
Boxplots

Boxplots

Boxplots
Using histograms to plot a cumulative distribution

Using histograms to plot a cumulative distribution

Using histograms to plot a cumulative distribution
Some features of the histogram (hist) function

Some features of the histogram (hist) function

Some features of the histogram (hist) function
Polar plot

Polar plot

Polar plot
Polar Legend

Polar Legend

Polar Legend
Using accented text in Matplotlib

Using accented text in Matplotlib

Using accented text in Matplotlib
Scale invariant angle label

Scale invariant angle label

Scale invariant angle label
Annotating Plots

Annotating Plots

Annotating Plots
Composing Custom Legends

Composing Custom Legends

Composing Custom Legends
Date tick labels

Date tick labels

Date tick labels
AnnotationBbox demo

AnnotationBbox demo

AnnotationBbox demo
Labeling ticks using engineering notation

Labeling ticks using engineering notation

Labeling ticks using engineering notation
Annotation arrow style reference

Annotation arrow style reference

Annotation arrow style reference
Legend using pre-defined labels

Legend using pre-defined labels

Legend using pre-defined labels
Legend Demo

Legend Demo

Legend Demo
Mathtext

Mathtext

Mathtext
Math fontfamily

Math fontfamily

Math fontfamily
Multiline

Multiline

Multiline
Rendering math equations using TeX

Rendering math equations using TeX

Rendering math equations using TeX
Text Rotation Relative To Line

Text Rotation Relative To Line

Text Rotation Relative To Line
Title positioning

Title positioning

Title positioning
Text watermark

Text watermark

Text watermark
Annotate Transform

Annotate Transform

Annotate Transform
Annotating a plot

Annotating a plot

Annotating a plot
Annotation Polar

Annotation Polar

Annotation Polar
Programmatically controlling subplot adjustment

Programmatically controlling subplot adjustment

Programmatically controlling subplot adjustment
Dollar Ticks

Dollar Ticks

Dollar Ticks
Simple axes labels

Simple axes labels

Simple axes labels
Text Commands

Text Commands

Text Commands
Color Demo

Color Demo

Color Demo
Color by y-value

Color by y-value

Color by y-value
PathPatch object

PathPatch object

PathPatch object
Bezier Curve

Bezier Curve

Bezier Curve
Dark background style sheet

Dark background style sheet

Dark background style sheet
FiveThirtyEight style sheet

FiveThirtyEight style sheet

FiveThirtyEight style sheet
ggplot style sheet

ggplot style sheet

ggplot style sheet
Axes with a fixed physical size

Axes with a fixed physical size

Axes with a fixed physical size
Parasite Simple

Parasite Simple

Parasite Simple
Simple Axisline4

Simple Axisline4

Simple Axisline4
Axis line styles

Axis line styles

Axis line styles
Parasite Axes demo

Parasite Axes demo

Parasite Axes demo
Parasite axis demo

Parasite axis demo

Parasite axis demo
Custom spines with axisartist

Custom spines with axisartist

Custom spines with axisartist
Simple Axisline

Simple Axisline

Simple Axisline
Anatomy of a figure

Anatomy of a figure

Anatomy of a figure
Integral as the area under a curve

Integral as the area under a curve

Integral as the area under a curve
Stock prices over 32 years

Stock prices over 32 years

Stock prices over 32 years
XKCD

XKCD

XKCD
Decay

Decay

Decay
The Bayes update

The Bayes update

The Bayes update
The double pendulum problem

The double pendulum problem

The double pendulum problem
Animated 3D random walk

Animated 3D random walk

Animated 3D random walk
Animated line plot

Animated line plot

Animated line plot
MATPLOTLIB **UNCHAINED**

MATPLOTLIB UNCHAINED

MATPLOTLIB **UNCHAINED**
Mouse move and click events

Mouse move and click events

Mouse move and click events
Cross hair cursor

Cross hair cursor

Cross hair cursor
Data Browser

Data Browser

Data Browser
Keypress event

Keypress event

Keypress event
Legend Picking

Legend Picking

Legend Picking
Looking Glass

Looking Glass

Looking Glass
Path Editor

Path Editor

Path Editor
Pick Event Demo

Pick Event Demo

Pick Event Demo
Pick Event Demo2

Pick Event Demo2

Pick Event Demo2
Resampling Data

Resampling Data

Resampling Data
Timers

Timers

Timers
Changing colors of lines intersecting a box

Changing colors of lines intersecting a box

Changing colors of lines intersecting a box
Custom projection

Custom projection

Custom projection
Patheffect Demo

Patheffect Demo

Patheffect Demo
Pythonic Matplotlib

Pythonic Matplotlib

Pythonic Matplotlib
SVG Filter Line

SVG Filter Line

SVG Filter Line
TickedStroke patheffect

TickedStroke patheffect

TickedStroke patheffect
Zorder Demo

Zorder Demo

Zorder Demo
Plot 2D data on 3D plot

Plot 2D data on 3D plot

Plot 2D data on 3D plot
3D box surface plot

3D box surface plot

3D box surface plot
Parametric Curve

Parametric Curve

Parametric Curve
Lorenz Attractor

Lorenz Attractor

Lorenz Attractor
2D and 3D *Axes* in same *Figure*

2D and 3D Axes in same Figure

2D and 3D *Axes* in same *Figure*
Asinh Demo

Asinh Demo

Asinh Demo
Loglog Aspect

Loglog Aspect

Loglog Aspect
Scales

Scales

Scales
Symlog Demo

Symlog Demo

Symlog Demo
Anscombe's quartet

Anscombe's quartet

Anscombe's quartet
Radar chart (aka spider or star chart)

Radar chart (aka spider or star chart)

Radar chart (aka spider or star chart)
Centered spines with arrows

Centered spines with arrows

Centered spines with arrows
Multiple Yaxis With Spines

Multiple Yaxis With Spines

Multiple Yaxis With Spines
Spine Placement

Spine Placement

Spine Placement
Spines

Spines

Spines
Custom spine bounds

Custom spine bounds

Custom spine bounds
Centering labels between ticks

Centering labels between ticks

Centering labels between ticks
Formatting date ticks using ConciseDateFormatter

Formatting date ticks using ConciseDateFormatter

Formatting date ticks using ConciseDateFormatter
Date Demo Convert

Date Demo Convert

Date Demo Convert
Custom tick formatter for time series

Custom tick formatter for time series

Custom tick formatter for time series
Date Precision and Epochs

Date Precision and Epochs

Date Precision and Epochs
Major and minor ticks

Major and minor ticks

Major and minor ticks
The default tick formatter

The default tick formatter

The default tick formatter
Set default y-axis tick labels on the right

Set default y-axis tick labels on the right

Set default y-axis tick labels on the right
Setting tick labels from a list of values

Setting tick labels from a list of values

Setting tick labels from a list of values
Move x-axis tick labels to the top

Move x-axis tick labels to the top

Move x-axis tick labels to the top
Evans test

Evans test

Evans test
CanvasAgg demo

CanvasAgg demo

CanvasAgg demo
Annotate Explain

Annotate Explain

Annotate Explain
Connect Simple01

Connect Simple01

Connect Simple01
Connection styles for annotations

Connection styles for annotations

Connection styles for annotations
Nested GridSpecs

Nested GridSpecs

Nested GridSpecs
PGF fonts

PGF fonts

PGF fonts
PGF texsystem

PGF texsystem

PGF texsystem
Simple Annotate01

Simple Annotate01

Simple Annotate01
Simple Legend01

Simple Legend01

Simple Legend01
Simple Legend02

Simple Legend02

Simple Legend02
Annotated Cursor

Annotated Cursor

Annotated Cursor
Buttons

Buttons

Buttons
Check Buttons

Check Buttons

Check Buttons
Cursor

Cursor

Cursor
Multicursor

Multicursor

Multicursor
Radio Buttons

Radio Buttons

Radio Buttons
Rectangle and ellipse selectors

Rectangle and ellipse selectors

Rectangle and ellipse selectors
Slider

Slider

Slider
Snapping Sliders to Discrete Values

Snapping Sliders to Discrete Values

Snapping Sliders to Discrete Values
Span Selector

Span Selector

Span Selector
Textbox

Textbox

Textbox
Quick start guide

Quick start guide

Quick start guide
Artist tutorial

Artist tutorial

Artist tutorial
Legend guide

Legend guide

Legend guide
Styling with cycler

Styling with cycler

Styling with cycler
Constrained Layout Guide

Constrained Layout Guide

Constrained Layout Guide
Tight Layout guide

Tight Layout guide

Tight Layout guide
Arranging multiple Axes in a Figure

Arranging multiple Axes in a Figure

Arranging multiple Axes in a Figure
Autoscaling

Autoscaling

Autoscaling
Faster rendering by using blitting

Faster rendering by using blitting

Faster rendering by using blitting
Path Tutorial

Path Tutorial

Path Tutorial
Transformations Tutorial

Transformations Tutorial

Transformations Tutorial
Specifying Colors

Specifying Colors

Specifying Colors
Text in Matplotlib Plots

Text in Matplotlib Plots

Text in Matplotlib Plots
plot(x, y)

plot(x, y)

plot(x, y)
fill_between(x, y1, y2)

fill_between(x, y1, y2)

fill_between(x, y1, y2)
tricontour(x, y, z)

tricontour(x, y, z)

tricontour(x, y, z)
tricontourf(x, y, z)

tricontourf(x, y, z)

tricontourf(x, y, z)
tripcolor(x, y, z)

tripcolor(x, y, z)

tripcolor(x, y, z)